Optimized Minimum-Search for SAR Backprojection Autofocus on GPUs Using CUDA

verfasst von
Niklas Rother, Christian Fahnemann, Jan Wittler, Holger Christoph Blume
Abstract

Autofocus techniques for synthetic aperture radar (SAR) can improve the image quality substantially. Their high computational complexity imposes a challenge when employing them in runtime-critical implementations. This paper presents an autofocus implementation for stripmap SAR specially optimized for parallel architectures like GPUs. Thorough evaluation using real SAR data shows that the tunable parameters of the algorithm allow to counterbalance runtime and achieved image quality.

Organisationseinheit(en)
Fachgebiet Architekturen und Systeme
Typ
Aufsatz in Konferenzband
Publikationsdatum
2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.15488/13271 (Zugang: Offen)
https://doi.org/10.1109/RadarConf2043947.2020.9266636 (Zugang: Geschlossen)