Application-specific soft-core vector processor for advanced driver assistance systems

verfasst von
Stephan Nolting, Florian Giesemann, Julian Hartig, Achim Schmider, Guillermo Paya-Vaya
Abstract

Implementing convolutional neural networks for scene labelling is a current hot topic in the field of advanced driver assistance systems. The massive computational demands under hard real-time and energy constraints can only be tackled using specialized architectures. Also, cost-effectiveness is an important factor when targeting lower quantities. In this PhD thesis, a vector processor architecture optimized for FPGA devices is proposed. Amongst other hardware mechanisms, a novel complex operand addressing mode and an intelligent DMA are used to increase perfromance. Also, a C-compiler support for creating applications is introduced.

Organisationseinheit(en)
Institut für Mikroelektronische Systeme
Typ
Aufsatz in Konferenzband
Publikationsdatum
2017
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Computernetzwerke und -kommunikation, Angewandte Informatik, Hardware und Architektur, Software
Elektronische Version(en)
https://doi.org/10.23919/FPL.2017.8056836 (Zugang: Geschlossen)