Variation-aware behavioral models of analog circuits using support vector machines with interval parameters

verfasst von
Anna Krause, Markus Olbrich, Erich Barke
Abstract

Machine learning algorithms have recently been used successfully to generate behavioral models of analog circuits. We take this approach one step further and include parameter variations directly into models using specialized interval arithmetics. We developed a new support vector machine algorithm which estimates functions with interval-valued parameters. We applied this approach to modeling non-linear, static transfer functions of analog circuits with parameter variations and successfully simulated these models using a custom-built simulator.

Organisationseinheit(en)
Institut für Mikroelektronische Systeme
Typ
Aufsatz in Konferenzband
Seiten
121-126
Anzahl der Seiten
6
Publikationsdatum
14.11.2014
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektrotechnik und Elektronik, Allgemeine Computerwissenschaft
Elektronische Version(en)
https://doi.org/10.1109/CEEC.2014.6958566 (Zugang: Unbekannt)