Markerless camera-based vertical jump height measurement using openpose

verfasst von
Fritz Webering, Holger Blume, Issam Allaham
Abstract

Vertical jump height is an important tool to measure athletes' lower body power in sports science and medicine. This work improves upon a previously published self-calibrating algorithm, which determines jump height using a single smartphone camera. The algorithm uses the parabolic fall trajectory obtained by tracking a single feature in a high-speed video. Instead of tracking an ArUco marker, which must be attached to the jumping subject, this work uses the OpenPose neural network for human pose estimation in order to calculate an approximation of the body center of mass. Jump heights obtained this way are compared to the reference heights from a motion capture system and to the results of the original work. The result is a trade-off between increased ease-of-use and slightly diminished accuracy of the jump height measurement.

Organisationseinheit(en)
Fachgebiet Architekturen und Systeme
Typ
Aufsatz in Konferenzband
Seiten
3863-3869
Anzahl der Seiten
7
Publikationsdatum
2021
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Maschinelles Sehen und Mustererkennung, Elektrotechnik und Elektronik
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.15488/13695 (Zugang: Offen)
https://doi.org/10.1109/cvprw53098.2021.00428 (Zugang: Geschlossen)