Exploring the Reconfigurable Memory Effect in Electroforming-Free YMnO3-Based Resistive Switches

Towards a Tunable Frequency Response

verfasst von
Xianyue Zhao, Nan Du, Jan Dellith, Marco Diegel, Uwe Hübner, Bernhard Wicht, Heidemarie Schmidt
Abstract

Memristors, since their inception, have demonstrated remarkable characteristics, notably the exceptional reconfigurability of their memory. This study delves into electroforming-free (Formula presented.) (YMO)-based resistive switches, emphasizing the reconfigurable memory effect in multiferroic YMO thin films with metallically conducting electrodes and their pivotal role in achieving adaptable frequency responses in impedance circuits consisting of reconfigurable YMO-based resistive switches and no reconfigurable passive elements, e.g., inductors and capacitors. The multiferroic YMO possesses a network of charged domain walls which can be reconfigured by a time-dependent voltage applied between the metallically conducting electrodes. Through experimental demonstrations, this study scrutinizes the impedance response not only for individual switch devices but also for impedance circuitry based on YMO resistive switches in both low- and high-resistance states, interfacing with capacitors and inductors in parallel and series configurations. Scrutinized Nyquist plots visually capture the intricate dynamics of impedance circuitry, revealing the potential of electroforming-free YMO resistive switches in finely tuning frequency responses within impedance circuits. This adaptability, rooted in the unique properties of YMO, signifies a paradigm shift heralding the advent of advanced and flexible electronic technologies.

Organisationseinheit(en)
Laboratorium für Nano- und Quantenengineering
Institut für Mikroelektronische Systeme
Externe Organisation(en)
Friedrich-Schiller-Universität Jena
Leibniz-Institut für Photonische Technologien (IPHT)
Typ
Artikel
Journal
MATERIALS
Band
17
Anzahl der Seiten
13
ISSN
1996-1944
Publikationsdatum
05.06.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Materialwissenschaften, Physik der kondensierten Materie
Elektronische Version(en)
https://doi.org/10.3390/ma17112748 (Zugang: Offen)