Entwurf einer konfigurierbaren, massiv parallelen Computer-Vision Vektorprozessorarchitektur und einer Abbildungsmethodik für Anwendungen zur Objekterkennung auf eingebetteten Systemen
Leitung: | apl. Prof. Dr.-Ing. G. Payá Vayá |
Team: | Dipl.-Ing. S. Nolting, Dipl.-Ing. L. Gerlach |
Jahr: | 2016 |
Laufzeit: | Mai 2016 - Oktober 2017 |
Ist abgeschlossen: | ja |
Die steigende Komplexität von aktuellen Computer-Vision-Algorithmen für das autonome Fahren, wie z.B. Objekterkennung und Klassifizierung mit Hilfe neuronaler Netze, stellt eine Herausforderung für Automobilzulieferer dar. Das Bereitstellen einer schritthaltenden Verarbeitung (Echtzeitfähigkeit), ist selbst mit aktuellen technischen Plattformen speziell unter der Rahmenbedingung eines sehr geringen Leistungsverbrauchs von wenigen Watt schwer zu erreichen. Ziel dieses Projektes ist der Entwurf eines neuen Ansatzes eines applikationsspezifischen Vektorprozessors füreingebettete und FPGA-Plattformen. Durch die modulare Struktur und Konfigurierbarkeit in Verbindung mit einer besonders für die Implementierung von Automotive-Anwendungen geeigneten Abbildungsmethodikund unter Verwendung neuartiger funktionale Mechanismen soll der bekannte Overhead anderer Plattformen (z.B. GPU) behoben werden. Ein FPGA-basierter Prototyp am Ende des Projektes soll die Leistungsfähigkeit des Vektorprozessorkonzepts für eine ausgewählte Anwendung demonstrieren.