Switch Stacking in Power Management ICs

verfasst von
Peter Renz, Maik Kaufmann, Michael Lueders, Bernhard Wicht
Abstract

The stacking of low-voltage transistors brings several advantages for the design of power management integrated circuits (PMICs). Process nodes and, thereby, the I/O voltage of the core devices shrink down, while the supply voltages of many applications cannot be reduced at the same rate. The stacking of low-voltage devices is often more area- and energy-efficient compared with using one high-voltage transistor. This work proposes an implementation option for the stacking of three low-voltage transistors, which, as a significant advantage, does not require additional supply rails as required in the prior art. It is independent of the input voltage and can, therefore, be widely used in different PMIC designs. The overall article is set up in a survey and tutorial style. It gives an overview of existing solutions and presents best-practice design guidelines for proper implementation of up to four stacked switches. The efficiency benefit of low-voltage transistor stacking over single high-voltage switches is investigated with a model of the transistor stack. Experimental results for loss energy and area consumption of various switch configurations in 130-nm CMOS confirm the presented design aspects. The advantages are also demonstrated by measurement results of a hybrid dc-dc converter with optimized power switch stacking.

Organisationseinheit(en)
Fachgebiet Mixed-Signal-Schaltungen
Typ
Artikel
Journal
IEEE Journal of Emerging and Selected Topics in Power Electronics
Band
9
Seiten
3735-3743
Anzahl der Seiten
9
ISSN
2168-6777
Publikationsdatum
29.07.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Energieanlagenbau und Kraftwerkstechnik, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.1109/jestpe.2020.3012813 (Zugang: Geschlossen)