Robustness validation of integrated circuits and systems

authored by
M. Barke, M. Kärgel, W. Lu, F. Salfelder, L. Hedrich, M. Olbrich, M. Radetzki, U. Schlichtmann
Abstract

Robust system design is becoming increasingly important, because of the ongoing miniaturization of integrated circuits, the increasing effects of aging mechanisms, and the effects of parasitic elements, both intrinsic and external. For safety reasons, particular emphasis is placed on robust system design in the automotive and aerospace sectors. Until now, the term robustness has been applied very intuitively and there has been no proper way to actually measure robustness. However, the complexity of contemporary systems makes it difficult to fulfill tight specifications. For this reason, robustness must be integrated into a partially automated design flow. In this paper, a new approach to robustness modeling is presented, in addition to new ways to quantify or assess the robustness of a design. To demonstrate the flexibility of the proposed approach, it is adapted and applied to several different scenarios. These include the robustness evaluation of digital circuits under aging effects, such as NBTI; the robustness modeling of analog and mixed signal circuits using affine arithmetic; and the robustness study of software algorithms on a high system level.

Organisation(s)
Institute of Microelectronic Systems
External Organisation(s)
Technical University of Munich (TUM)
University of Stuttgart
Goethe University Frankfurt
Type
Conference contribution
Pages
145-154
No. of pages
10
Publication date
2012
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Electrical and Electronic Engineering, Safety, Risk, Reliability and Quality
Electronic version(s)
https://doi.org/10.1109/ACQED.2012.6320491 (Access: Unknown)