Simulations in terms of radiation effects on different BEOL material systems
- authored by
- Kirsten Weide-Zaage, Guillermo Paya-Vaya, Philemon Eichin
- Abstract
Particle radiation on ground and especially in space is unavoidable. This may lead to unwanted failures in electronic devices due to the continuously downscaling of microelectronic structures. Thinking of the expectation of more than 8000 new launched satellites in the next few years the need of radiation hardened components comes more and more in focus. Due to the high costs of radiation hardened (Rad-Hard) components, the aim is to find commercials of the shelf (COTS) which meets the need for this kind of harsh environment. Beside air and space applications, automotive components have to be Rad-Hard as well. Such components are specially designed and tested for the application in automotive. It is well known that test time in all cases is expensive and time consuming. Furthermore, simulations are more and more desired to decrease test times and allow a deeper look into the physical behavior of components and devices. The influences of materials (heavy metal), metallization layers and thickness of the die and radiation energy of neutrons and gamma radiation and their interactions will be discussed and simulation results concerning technological influences will be shown.
- Organisation(s)
-
Institute of Microelectronic Systems
- Type
- Conference contribution
- Publication date
- 03.2019
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials, Fluid Flow and Transfer Processes, Electrical and Electronic Engineering, Mechanical Engineering, Safety, Risk, Reliability and Quality, Modelling and Simulation
- Electronic version(s)
-
https://doi.org/10.1109/eurosime.2019.8724581 (Access:
Closed)